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Similarity, Confusability, and the Density Hypothesis

James E. Corter
Teachers College, Columbia University

Results from several letter- and digit-identification studies have been interpreted (Appelman &

Mayzner, 1982; Krumhansl, 1982) as providing support for the hypothesis that psychological simi-
larity is influenced by the local density of items in the stimulus space. This conclusion is questioned

on the grounds that density was not directly manipulated in the studies, thus alternative explanations
based on other stimulus characteristics cannot be excluded. In the present article six experiments
are reported in which stimulus density was manipulated. In three experiments using similarity rat-

ings and two using discrimination confusions, no effect of stimulus density was found. However, the
identification counterpart of one of the discrimination studies did provide evidence of an effect
of density on response probabilities. It is concluded that stimulus density can affect identification
performance through its influence on the choice process implicit in any identification task, but is
not an important determinant of psychological similarity.

The notion of similarity plays an important role in psycho-

logical theories of categorization, learning, memory, and

choice. Data from many types of tasks may be analyzed as or

converted into measures of similarity: direct ratings of the simi-

larity or dissimilarity of stimulus pairs, discrimination confu-

sions, identification errors, errors in classification or paired-as-

sociates learning, correlation or co-occurrence data, reaction

times, and so forth.

Probably the most widely used models for similarity data

have been geometric ones. The introduction of multidimen-

sional scaling algorithms (Shepard, 1962a, 1962b; Torgerson,

1958) provided useful methods for analyzing and representing

similarity or other proximity data. In recent years multidimen-

sional scaling and related methods have been applied especially

to analyze perceptual data (including confusion data of various

sorts) and in market research. However, Tversky (1977) ques-

tioned the appropriateness of several of the assumptions under-

lying geometric models of similarity. These models assume that

objects can be represented as points in a coordinate space such

The work described here was reported in the author's doctoral thesis

submitted to the Department of Psychology, Stanford University, 1983,
and was supported in part by National Institute of Mental Health Train-
ing Grant 5 T32 MH 15157-05.

I wish to thank my advisor, Amos Tversky, for his support and advice

during this project. Working with him was both a great honor and a
great pleasure. I also wish to thank the other members of my disserta-
tion committee, Roger Shepard, Ewart Thomas, and Brian Wandell,

for their suggestions. J. Douglas Carroll and Koshio Takane provided
interesting comments on later versions of the manuscript, and William

Prinzmetal made a number of useful suggestions. Thanks are due to
Leslie Jonath for her help in conducting Experiments 5 and 6. Finally,
I gratefully acknowledge the support of my wife, Lisa Church, during
all stages of the work.

Correspondence concerning this article should be addressed to James
E. Corter, Box 41, Teachers College, Columbia University, New \brfc,
Mew York 10020.

that the observed dissimilarities are directly related to the dis-

tances between the points in the space. However, such a repre-

sentation of the proximity data as distances in the space re-

quires that the proximity data satisfy both certain dimensional

assumptions and the axioms of a metric space: minimality,

symmetry, and the triangle inequality.

Minimality requires that distances in a metric space satisfy

S(x, y) £ S(x, y) = 0. That is, the distance of an object to itself

must be 0, and the distance of an object to any other object must

be greater than 0. If the proximity data are dissimilarities that

are monotonically related to the underlying distances, then

minimality requires that the dissimilarity of an object to itself

is the same for all objects, and less than the dissimilarity of the

object to any other. Many methods of gathering proximities do

not provide any estimate of "self-similarity." One type of task

that can provide such estimates is a discrimination task, in

which subjects are required to respond "same" or "different"

to stimulus pairs. The proportion of correct "same" responses

can be used as a measure of self-similarity. Data from such ex-

periments (e.g. Rothkopf, 1957) suggest that minimality is often

not satisfied.

Symmetry requires that the distance (or dissimilarity) of x to

y be equal to the distance (dissimilarity) of y to x: S(x, y) -

S(y, x). This assumption too is often violated, in similarity data

(Tversky, 1977), identification confusions (e.g., Appelman &

Mayzner, 1982; Oilmore, Hersh, Caramazza, & Griffin, 1979;

Keren & Bagger, 1981; Townsend, 1971), and discrimination

confusions (e.g., Rothkopf, 1957; Tversky, 1977).

The triangle inequality states that for any three objects, x, y,

and z, S(x, y) + S(y, z) s 5(jc, z). This property cannot be falsified

by ordinal or interval dissimilarity data because adding a large

enough positive constant to all the dissimilarities ensures that

it will be satisfied. However, examples can be constructed so

that the additive constant needed is quite large relative to

the actual observed dissimilarities, casting some doubt on the

psychological plausibility of the triangle inequality con-

straint.
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The Contrast Model

Tversky (1977) proposed an alternative model of similarity,
based not on a geometric or spatial representation, but rather
on a set-theoretic approach. His contrast model (sometimes re-
ferred to as the feature-matching model) assumes that objects
are characterized not by their values on a set of quantitative
dimensions, but rather by sets of qualitative features. The con-
trast model describes the similarity of objects x and y as a linear
combination (i.e., a contrast) of functions of the feature sets
associated with x and with y. Specifically, the model can be writ-

ten in terms of dissimilarities as

d(x,y) = -8F(XnY) + aG(X-Y) + pG(Y-X), ( I )

where X and Y refer respectively to the features of objects x and
y, F and G are functions on these feature sets, with positive
ranges; and a, 0, and 9 are positive constants that reflect the
weighting of the corresponding terms. Equation 1 says that the
dissimilarity of x and y is a negative function of some measure
of the features common to x and y (X n Y), and a positive func-
tion of the measure of the features that belong to x but not to y

(X- Y) and the features that belong to y but not to x (Y - X).
These latter two feature sets are referred to as the distinctive
features of x and of y.

The contrast model can account for violations of minimality
and asymmetry, as well as certain other phenomena associated
with proximity data, such as systematic differences between rat-
ings of similarity and of dissimilarity and changes in similarity
with context (Tversky, 1977). Briefly, violations of minimality
(e.g., as when x has a higher self-similarity than y) are assumed
to be related to differences in the measures of the feature sets X
and Y. The higher the measure of X, the more similar x will be
to itself. Predicting asymmetries in proximity measures re-
quires an additional assumption, the focusing hypothesis. The
focusing hypothesis suggests that certain experimental tasks
will cause the subject to focus more on one stimulus (x) than on
the other (y), which will result in the features of x being
weighted more heavily. That is, a in Equation 1 will be in-
creased relative to ft. If the objects have different total feature
measures (i.e., if one object is more prominent or has more sa-
lient features than the other), then the two distinctive feature
terms of Equation 1 must have different measures, and asym-
metries will result. If a is greater than (S, and x has greater total
feature measure, then d(x, y) > d(y, x).

Thus, the contrast model can account for violations of the
axioms underlying traditional geometric models of similarity.
In addition, the description of the attributes of objects as dis-
crete qualitative properties rather than as values on a set of
quantitative dimensions has obvious appeal in many psycholog-
ical applications.

The Distance-Density Model

Krumhansl (1978) suggested that the violations of the metric
axioms summarized by Tversky (1977) could be handled
within a geometric-type model, in which the geometric distance
between two stimuli x and y is modified by the density of other
points in the space, especially in the regions of x and y. This

results in a modified distance function, d', which reflects the
psychological dissimilarity of x and y. One possible form of this
dissimilarity function is given as

d'(x, y) = d(x, y) + aD(x) + &D(y), (2)

where d(x, y) is the "true" distance between x and y in the stim-
ulus configuration, D(x) and D(y) are some measures of local
density in the regions of x and y, (e.g., the number of other stim-
uli within a certain radius), and a and fi are positive constants.
Psychologically, the model suggests that dense regions of the
stimulus space are expanded in some way, perhaps because finer
discriminations are made between stimuli in that region. Thus,
increasing the density in a region would increase the judged dis-
similarity of objects in that region.

Violations of minimality are predicted by the distance-den-
sity model whenever the densities of all objects are not equal
because according to Equation 2 the dissimilarity of x to itself
is equal to (a + fi)D(x). Thus, differences in self-similarities are
predicted to be related to differences in the local densities of
objects, rather than to differences in the measures of their fea-
ture sets (i.e., their salience or prominence) as predicted by the
contrast model. In conjunction with the focusing hypothesis,
the distance-density model also predicts asymmetries. If the ex-
perimental task causes the subject to focus more on stimulus x,
then a in Equation 2 will be increased, which corresponds to a
tendency on the part of the subject to pay relatively more atten-
tion to the density in the region of x. If the stimulus density
around x is greater than around y, then the model predicts that
d(x, y) > d(y, x).

Evidence for the Distance-Density Model

In support of the distance-density model, Krumhansl (1978,

1982) presented reanalyses of several proximity matrices de-
rived from previous studies. For example, she analyzed the data
of Rothkopf (1957), who collected "same-different" confusions
for Morse code signals. To test if density did seem to affect the
confusability of stimulus pairs, she selected both interior stimu-
lus pairs (i.e., those pairs for which at least one signal fell near
the center of the configuration in a multidimensional scaling
solution for the data), and exterior pairs. For interior and exte-
rior pairs with approximately equal distances in the solution,
the average confusability for interior (i.e., denser) pairs was sig-
nificantly less than for exterior pairs, as predicted by the model.

Evidence that differences in self-similarity may be related to
differences in densities was obtained from analyses of several
sets of "same-different" confusions (Balzano, 1977; Rothkopf,
1957) and learning data. However, Krumhansl (1978) notes
that there are certain constraints between the diagonal and off-
diagonal entries of a matrix containing learning or identifica-
tion data. That is, a stimulus that is very often confused with
other stimuli will have large off-diagonal entries, which means
that the corresponding diagonal entry (i.e., the frequency of cor-
rect responses or self-confusions) will necessarily be small.
Thus, the quantities (density and probability of correct re-
sponse) predicted to be related by the model are not indepen-
dent for this type of data.

Evidence supporting the distance-density model's explana-
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tion of asymmetries was also obtained from the Rothkopf

(1957) data. Krumhansl (1978) found that those signal pairs

that showed large asymmetries in confusion probabilities also

showed asymmetries in stimulus densities. Note that Tversky

(1977) presented an analysis of these data that demonstrated a

relation between confusion asymmetries and number of fea-

tures (i.e., length of signal), as predicted by the contrast model.

Appelman and Mayzner (1982) analyzed several sets of pre-

viously published letter-identification data, concluding that self-

confusions (i.e., the probability of correct identification of a let-

ter) were better predicted by density than by number of fea-

tures, and that asymmetries were more strongly related to

differences in stimulus densities than to differences in number

of features. However, the direction of asymmetries was opposite

to that predicted by the distance-density model (assuming that

the presented stimulus is focused on and that its density is more

heavily weighted). In Appelman and Mayzner's phrase, they

found that the denser letter "gives more confusions than it gets."

Krumhansl (1982) analyzed some digit identification data re-

ported by Keren and Baggen (1981), concluding that the con-

trast and distance-density models were roughly comparable in

overall fit and ability to predict asymmetries, but that self-con-

fusions were better predicted by density than by number of fea-

tures.

Need for Experimental Testing

of the Density Hypothesis

The evidence supporting the notion that psychological simi-

larity is partly a function of local stimulus density depends on

reanalyses of proximity data sets. One problem with these anal-

yses is a certain circularity between the measures of density

used and the dependent measure, the actual proximities. In

many of the analyses reported by Krumhansl (1978), proximi-

ties were correlated with measures of density indirectly derived

from those same proximities (such as the number of other stim-

uli falling within a certain radius in a multidimensional scaling

solution). The analyses in Appelman and Mayzner (1982) and

Krumhansl (1982) used more independent measures of dis-

tance and density, in that stimulus densities were obtained by a

featural analysis of the stimuli, and not estimated using multidi-

mensional scaling solutions derived from the proximity data

themselves.

The major problem in interpreting the results of these analy-

ses is that such nonexperimental methods can provide only sug-

gestive evidence for or against the density hypothesis. The rea-

son is that density is confounded with a number of different

variables for these data sets, thus alternative explanations based

on these other variables cannot be excluded. For example, in

Keren and Baggen's (1981) digit data, density and number of

common features are correlated .77 across digit pairs (Krum-

hansl, 1982). For the letter data of Gilmore et al. (1979) ana-

lyzed by Appelman and Mayzner (1982), the corresponding

correlation is .62. In a number of the data sets (e.g., Rothkopf,

1957), density is highly correlated with typicality. Conse-

quently, effects such as asymmetries in confusion probabilities

might be caused by differences between stimuli in density, in

salience or prominence (as predicted by the contrast model), in

typicality, or other stimulus characteristics. Distinguishing

these potential explanations requires experimental control of

stimulus materials.

Furthermore, the types of data that have provided evidence

suggestive of density effects consist mainly of discrimination

and identification confusions. If stimulus density affects psycho-

logical similarity, density might be expected to have an influ-

ence on other types of proximity data as well, for example, on

direct ratings of similarity and dissimilarity. Identification tasks

in particular have characteristics that set them apart from other

paradigms in which proximity data are gathered. In most of

these paradigms, two stimuli are presented perceptually, and

the subject makes some response or judgment based on the sim-

ilarity of the pair. In an identification task only one stimulus is

actually presented. A "pair" of stimuli exists only in the sense

that an incorrect response may be made to a presented stimu-

lus. Also, the subject must choose a response from the set of

valid alternatives. Therefore, a choice process is implicit in the

task.

In summary, meaningful testing of the density hypothesis re-

quires experimental manipulation of stimulus materials. In ad-

dition, evaluating the generality of any such effects calls for test-

ing of the hypothesis across different types of proximity mea-

sures, such as ratings and confusion probabilities. The first

requirement, experimental manipulation of density, can be

achieved in studies of proximity relations by using artificial

stimuli or by selecti ng subsets of the stimuli from a large popula-

tion. These methods were used in the studies reported by Tver-

sky (1977) and Tversky and Gati (1978), which provided evi-

dence for the influence of common and distinctive features on

similarity relations.

In the studies reported in the present article (three using di-

rect ratings of similarity, two using discrimination confusions,

and one using identification errors), between-subjects designs

were used to assess the effects of manipulating density on prox-

imity measures. In each of the studies there were two condi-

tions. One group of subjects rated stimuli that were designed

to have one relatively dense region in the neighborhood of a

particular target stimulus. The other group was given a stimulus

set that had the same total number of stimuli, but in which the

density was increased for a different target stimulus. The predic-

tion of the density model is clear in such an experiment: The

increased density in the region of the target stimulus should de-

crease the similarity (or confusability) of that stimulus to all

other stimuli, relative to the other condition. This method of

manipulating density was used in Experiments 1 -4. In Experi-

ments 5 and 6, density was manipulated (again in a between-

subjects design) by selecting different subsets of a population of

familiar stimuli (block letters). Each group saw a different sub-

set of six letters, designed to have high density for a particular

target letter.

Similar ity-Rating Studies

Experiment I

Experiment 1 tested for density effects in similarity ratings of

pairs of ellipses varying in height and width. In each condition
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Figure 1. Ellipse stimuli of Experiment 1. (Frame ellipses are designated
el-e9, and the context ellipses for Conditions A and B are designated
A10-A12andB10-BI2.)

of the between-subjects design, the local density for a certain
target ellipse was increased by adding ellipses with nearly iden-
tical values of height and width.

Method

Subjects. A total of 51 Stanford undergraduates participated in the
study as part of a course requirement.

Materials. Two sets of 12 ellipses each were constructed. In each set,
9 of the ellipses were frame stimuli: That is, these ellipses were common
to both sets of stimuli The remaining three were unique to one of the
two sets, and constituted the density manipulation for that set. In Condi-
tion A these three context stimuli were constructed so as to be highly
similar to Ellipse e4, and in Condition B so as to be highly similar to
Ellipse e6. Ellipse e4 is therefore referred to as the target ellipse for Con-
dition A, and Ellipse e6 is the target ellipse for Condition B. According
to the density hypothesis, the rated similarity of the target ellipse to the
other frame ellipses should be decreased (relative to the other condition)
by the additional context stimuli. Both sets of ellipses are shown in Fig-
ure 1.

Procedure. Subjects were randomly assigned to one of the two condi-
tions (n = 24 for Condition A, n - 27 for Condition B). In order to make
the composition of the stimulus set (hence the density manipulation)

more salient, they were initially asked to look through a training booklet
and study the set of ellipses for their condition. The booklet contained
one ellipse per page- When they indicated that they had familiarized
themselves with the set, they were given a test booklet containing the 66
pairs of the 12 ellipses in a random order, I pair per page. Ratings of
visual similarity were made by circling numbers on a 9-point scale on a
separate answer sheet. The pairs were presented in a separate random
order for each subject.

Results

The average ratings of similarity among the ellipses in the
two conditions are shown in Table 1. According to the density
hypothesis, the increased density in the region of Ellipse e4 in
Condition A should cause Ellipse e4 to be rated less similar to
the other frame stimuli, and analogously for Ellipse e6 in Condi-
tion B. The hypothesis was tested by defining a density statistic
that compared the similarity ratings involving target-frame
stimulus pairs for the two conditions.

The actual statistic used to test the hypothesis was

where

£4,* = S{e4, el) + S(e4, el) + S(e4, el) + S(e4, e5)

+ S(e4, el) + S(e4, e&) + S(e4, e9).

and

S(e6, el) + S(e6, el) +

+ S(e6, el) + S(ef>, 4>8)

, eS)

S(e4, el ) refers to the rated similarity of Ellipse e4 and Ellipse
el . The prediction of the density hypothesis was tested by com-
paring the value of this statistic for the two conditions. Note that
the density hypothesis predicts that the value of this statistic be
smaller for Condition A (density increased for Ellipse e4) than
for Condition B (density increased for Ellipse e6). That is, the
similarities involving a dense target ellipse should be smaller
than for the same ellipse in its nondense condition.

Table 1
Rated Visual Similarity of Ellipses: Experiment 1

Ellipse

el
e2
e3
e4
eS
e6
e7
e8
e9
A10
A l l
A12

el
_

5.42
2.71
6.08
5.38
3.29
3.08
5.17
3.50
5.50
6.38
6.58

e2

4.04
—

4.63
4.17
6.50
5.08
2.33
4.00
5.38
3.38
4.13
4.21

e3

1.S9
4.44

—2.25
3.67
6.83
1.54
2.46
5.17
1.96
2.25
2.04

e4

6.33
3.22
1.37

—4.63
2.42
5.33
5.79
2.96
7.63
7.42
7.79

e5

4.44
5.85
2.89
4.4!

—4.29
2.79
5.21
4.88
4.13
5.25
5.13

e6

2.30
5.74
6.04
2.22
4.56
—

1.63
3.08
5.92
2.71
3.33
3.04

e7

5.00
2.48
1.52
7.44
3.93
2.44

—4.00
1.79
5.71
4.71
4.38

e8

4.78
3.59
2.11
5.37
6.22
3.63
5.04

—4.25
5.42
6.42
5.33

e9

3.33
4.67
3.93
3.26
5.96
6.44
2.89
5.07
—

2.42
2.88
2.67

BIO

2.70
5.30
7.85
2.33
3.96
8.41
1.26
3.04
6.48

—6.88
6.92

B l l

3.81
5.96
6.63
3.41
5.04
7.30
1.59
3.81
6.19
6.78

—7.42

B12

2.67
4.96
6.70
2.56
4.67
8.30
1.44
3.37
6.74
8.15
7.63
—

Note. Data above the diagonal is from Condition B (density increased for Ellipse e6). Data below the diagonal is from Condition A {density increased
for Ellipse e4).
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Figure 2. Face stimuli of Experiment 2. (Frame faces are designated
fl-f5, context faces for Condition A by A6-A8, and context faces for
Condition B by B6-B8.)

The difference in the value of the statistic for the two condi-
tions {^A - ^B) was calculated as 0.120, which is in the direction
opposite to that predicted by the density hypothesis. The two-
group / test for this comparison was not significant, /(49) =
0.824,p> .05.

One potential objection to this analysis is that the mean and
variance of ratings may vary considerably from subject to sub-
ject. Although any differences between the groups in this regard
should be small, given the sample size, it could be argued that
such differences might be obscuring any density effect. There-
fore, in a second analysis the 36 similarity ratings among the
frame ellipses (i.e., for those stimulus pairs common to the two
conditions) were separately normalized for each subject. These
normalized ratings were then tested by the same statistic used
in the previous analysis. The results did not change under this
analysis. The difference \f> — ̂ B was again positive, 0.368,
((49) = 0.507, p>. 05.

Experiment 2

Experiment 2 was designed to test for density effects in rat-
ings of the similarity of a set of schematic faces varying on eye
size and curvature of mouth. The design of the experiment was
like that of Experiment 1: Density was manipulated (in a be-
tween-subjects design), and the effect on the rated similarity of
the faces was assessed.

Method

Subjects. A total of 49 Stanford undergraduates participated in the
study as part of a course requirement.

Materials. Two sets of eight faces varying on mouth curvature and
eye size were constructed. In each of the conditions five of the faces were
frame stimuli, and three were added context faces. The two sets of faces
used are shown in Figure 2. In Condition A the three context faces used
were constructed to be highly similar to Face f4, while in Condition B
they were highly similar to Face f2.

Procedure. The experimental procedure was the same as for Experi-
ment 1. Subjects were first shown a booklet with the set of faces for their
condition, and asked to familiarize themselves with the set. They then
worked through a test booklet that contained one of the 36 pairs of
stimuli on each page, assessing the visual similarity of each pair on a 9-
point scale and recording their rating on a separate answer sheet.

Results

The average similarity ratings for the stimuli are given in Ta-
ble 2. As in Experiment 1, the test of the density hypothesis was
performed by comparing the value of a statistic involving the
ratings for the two conditions. Because in Condition A Face f4
was the target stimulus (i.e., the face to which the added context
faces were most similar), the density hypothesis predicts that
the average similarity of this face to the other frame faces should
be decreased, and analogously for Face f2 in Condition B. So
the hypothesis may be tested by comparing, for the two condi-
tions, the value of the test statistic

where

and
2,* = S(f2J 1 ) + Sl/2,/3)

-I- S(/4,/3)

The difference in calculated values for the two conditions (^A -
^B) is 0.342, which is not significant at the .05 level, ?(47) =
0.444. For the z-score analysis, in which the ratings of frame-
frame pairs were normalized for each subject before the statistic
was calculated, the value of the comparison was 0.397, which
is not significant at the .05 level, t(47) = 0.819. Again, the values
of the comparisons were positive, rather than negative as pre-
dicted by the density hypothesis.

Experiment 3

Experiment 3 replicated the previous experiments using a set
of letter-like figures constructed from line segments.

Table 2
Rated Visual Similarity of Faces: Experiment 2

Face fl f4 f5 B6 B7 B8

fl
G
O
f4
f5
A6

5.38
4.04
6.00
2.29
6.13

5.20
—

5.33
2.25
5.63
2.58

3.68
5.20

—3.63
5.29
4.96

5.36
2.48
3.32

—
5.25
8.21

2.28
5.44
6.04
5.36

—4.83

5.04
8.40
6.00
3.16
5.40

—

3.92
7.16
6.48
3.00
5.72
7.36

3.80
7.48
5.92
2.80
5.92
7.28

A7 3.88 3.50 6.08 6.08 5.04 7.25 — 8.56
A8 3.63 3.38 5.17 7.08 6.21 6.33 8.04 —

Note. Data above the diagonal is from Condition B (density increased
for Face f2). Data below the diagonal is from Condition A (density in-
creased for Face f4).
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Figure 3. Figure stimuli used in Experiments 3 (similarity rating) and
4 (discrimination confusions). (Frame figures are f 1 -18, context figures
for Condition A are A9-A12, and context figures for Condition B are
B9-B12.)

Method
Subjects. A total of 50 Stanford undergraduates participated in the

study as part of a course requirement.
Materials. Two sets of 12 stimuli were constructed. There were 8

frame and 4 context figures in each condition, as is shown in Figure 3.
In Condition A, the density was increased in the region of Figure fl by
the addition of the four stimuli A9, AID, A11, and Al 2 to the context
set. In Condition B, the density was increased for Figure CS by the addi-
tion of B9-B12.

Procedure. The procedure was the same as for the previous experi-
ments. Subjects first looked through a training booklet, then worked
through a randomized test booklet, making their ratings of similarity
on a 9-point scale on a separate answer sheet.

Results
The matrices of similarity ratings are given in Table 3. The

comparison used to test for a density effect was

where

and

S8,* = SK/8,/2) + ,

+ Sl/8,/5) + S(/8,/6) + Sl/8,/7).

The difference in the values of the statistic for the two condi-
tions {^A - ^B) was 0.120, again positive rather than negative,
and again not significant, /(48) = 0.063, p > .05. The z-score
analysis also yielded a nonsignificant result, with a difference of
0.459,/(48)= 0.418.

Summary of Similarity-Rating Studies

The results of the three experiments were consistent. The pre-
dicted relation between local density and rated similarity was
not found in any of the studies. That this is not merely due to
inadequate power of the test is suggested by the feet that the
values calculated for the comparisons were all slightly positive,
contrary to the prediction of the density hypothesis. Also, the
sample sizes used were comparable to those normally used in
studies of rated similarity. Given these results, it seems safe to
conclude that stimulus density does not affect the similarity of
stimuli to any significant degree under the conditions of typical
similarity rating studies.

Objections that local density for the target stimuli may not
have been effectively manipulated can be dismissed by an exam-
ination of the similarity matrices. In each matrix, the nearest
neighbors of that matrix's target stimulus (e.g., Ellipse e4 in
Table 1, Condition A) are the added context stimuli. For exam-
ple, the similarities of Ellipses A10, A11, and A12 to Ellipse e4
in Condition A are 7.63, 7.42, and 7.79. The next closest stimu-
lus to Ellipse e4 in that condition is Ellipse e 1, which has a simi-
larity of 6.08 to Ellipse e4. Inspection of the other matrices re-
veals that the density manipulation was effective in all cases.

Table 3
Rated Visual Similarity of Letter-Like Figures: Experiment 3

Figure

fl
G
0
f4
£5
ft
17
IS
A9
AIO
Al l
A12

fl

.̂

2.72
2.40
3.48
2,60
3.72
3.56
3.16
6.64
6.60
6.52
6.92

f2

1.80

—3.96
4.16
3.80
3.52
2.24
3.12
3.28
2.84
3.36
3.12

B

1.88
2.40

—4.84
4.28
3.24
4.76
5.80
3.04
2.88
3.40
2.52

f4

2.52
3.36
4.12

—4.40
3.64
4.48
4.40
3.60
2.88
3.44
3.56

f5

2.40
3.36
3.96
3.8S

—3.64
4.24
4.56
3.16
3.68
3.80
3.44

f6

2.64
2.40
3.04
2.96
3.20

—4.08
4.60
4.64
5.48
4.60
4.32

f7

2.96
2.44
4.08
4.00
3.72
3.76

—6.64
4.64
4.68
3.28
4.00

re
2.36
2.96
5.56
3.96
3.36
3.72
5.40

—4.36
4.36
3.52
4.40

B9

2.16
2.96
5.20
4.36
4.28
3.80
4.68
7.96
—

5.16
5.28
4.68

BIO

2.16
4.08
5.68
4.12
3.04
3.68
4.76
7.68
6.72

—4,92
5.36

Bll

2.76
3.48
4.52
3.56
3.08
2.84
6.12
8.04
7.68
6.24
—

5.44

B12

2.96
2.80
4.28
3.40
4.92
4.04
6.12
6.28
4.84
5.12
5.48

—
Note. Data above the diagonal is from Condition B (density increased for Figure f8). Data below the diagonal is from Condition A {density increased
for Figure fl).
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Discrimination and Identification Studies

If density affects the perceived similarity of stimuli, then one

might expect to observe consistent effects of density across a

variety of proximity tasks. On the other hand, density might

affect task-specific components of certain proximity tasks but

not others. This might occur, for example, if density did not

affect perceived similarity but somehow affected the selection

of responses in a particular task. Because tasks such as rating

the similarity of two concepts and discriminating or identifying

them under degraded conditions might involve very different

processes or response strategies, density might affect perfor-

mance in some tasks but not others. Therefore, Experiments 4-

6 were designed to test whether manipulating density experi-

mentally has any effect on confusions between stimuli in dis-

crimination and identification tasks.

Experiment 4

Experiment 4 was designed to test if density influences the

probabilities of errors in a "same-different" discrimination

task. The study used the same set of figures as Experiment 3.

Method

Subjects. A total of 52 Stanford undergraduates participated in this
experiment as part of a course requirement.

Materials. The materials used were the figures used in Experiment

3, shown in Figure 3.
Procedure. Subjects were tested individually. Pairs of stimulus figures

were presented on a Megatek 5000 graphics display screen controlled
by a Data General Nova computer. The subject was seated before the

screen in a dimly lit room. A button board in front of the subject held
three keys: One was to initiate trials and the other two were used to

record "same" and "different" responses. The subject could use a foot
pedal instead of the middle key to initiate trials, if preferred.

The outline of a trial was as follows. A dot appeared in the middle of
the screen, indicating that all was ready for the subject to initiate the

trial. When the key was pressed, a pair of stimulus figures was flashed
very briefly upon the screen and immediately followed by a mask. The
subjects' task was to respond "same" if they thought the same figure
had appeared on both sides and "different" if they thought that two

different figures had appeared. For approximately half of the subjects
in each condition, "same" corresponded to the right key, and for the
other half to the left key.

Before the actual experiment began, subjects were given two types of
training tasks. First, the nature of the same-different task was explained
to them, and they were given 70 warm-up trials to familiarize them with

the task and use of the response keys. In these practice trials the stimulus
set consisted of the plus (+) and minus (-) symbols. The presentation
speed was increased every 10 trials during this training phase until the
subject was making a significant proportion of errors {greater than 15%).

Feedback on correctness was given only during this training phase.
Next, the subject was familiarized with the stimulus set to be used in

the actual experiment. A single figure was presented on the screen, and
the subject could view the next in the series by pressing the middle key.
At the end of the series the first was again presented, so that the subject
could go through the set as many times as desired. This procedure was

meant to be an electronic equivalent of the training booklet used in the
similarity-rating studies. Subjects were told to take approximately 5
min and study the set of figures to be used in the same-different task
until they felt confident they could pass a recognition test for the figures

in the set. This instruction was given to increase attention to the figures,
presumably making the composition of the context set more salient. No
recognition test was actually given.

When the subject expressed confidence that he or she knew the set of
materials, the experimental task began. The paradigm was the same-
different task described earlier. A subject was given two blocks of trials,

each consisting of 114 trials: one complete set of the 66 "different"
pairs, mixed with 48 "same" pairs. Pairs were presented in random or-
der. A presentation speed was selected on the basis of subject's perfor-
mance in the training task, with the aim of adjusting the difficulty of the

task to result in between 10% and 40% errors. This speed was adjusted
between blocks if necessary. Data from two subjects who performed at

chance levels on "different" pairs were excluded from the analysis, as
were subjects who did not complete both blocks for any reason.

Results

Table 4 shows the average percentage of confusions for stimu-

lus pairs in both conditions (the overall percentage of error for

"different" pairs was 25.9% for Condition A, 27.4% for Condi-

tion B.)

The percentage of error for a "different" pair (that is, the pro-

portion of times that subjects responded "same" when figures

x and y were presented) is a measure of the similarity or confus-

ability of x and y and is denoted C(x, y). According to the den-

sity hypothesis, in Condition A the confusability of Figure fl

with all other frame figures should be decreased by the addition

of the four highly similar figures. Analogously, in Condition B

the confusability of Figure f6 with the other frame figures

should be decreased. Accordingly, the same statistic used to test

the density hypothesis in Experiment 3 can be used for the test

of the present confusion data, substituting the proportions of

confusion errors C(x, y) for the similarity ratings S(x, y). For

purposes of the analysis, data from separate blocks were treated

as independent. Just as in the rating studies, the density hypoth-

esis predicts a negative value for the comparison. The actual

value of the comparison was 0.310, which is in the direction

opposite to that predicted by the density hypothesis, and is not

significant, t(16) = 1.58, p > .05.

Examination of Table 4 reveals that density was effectively

manipulated in this paradigm. The four context figures of Con-

dition A (A9, AID, Al l , A12) were the most often confused

with the target Figure f4, whereas in Condition B only Figure

f? was confused with the target stimulus f8 as often as one of

the added context figures.

Experiment 5

For familiar stimuli, such as letters, density can be manipu-

lated in between-subjects designs by selecting different subsets

of the population of stimuli. Experiments 5 and 6 examined the

effects of this type of density manipulation on letter confusions

in a discrimination task and an identification task.

Method

Subjects, 24 subjects participated in Experiments 5 and 6, receiving
either course credit or $4 for their participation.

Materials. The materials used in the experiments were two sets of six

uppercase block letters, constructed of line segments. For Condition 1
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Table 4
Discrimination Confusions Between Letter-Like Figures and Proportion Correct (PC): Experiment 4

Figure

fl
n
n
(4
K
{6
(7
K
A9
A10
Al l
A12

PC

n
_

0.095
0.095
0.024
O.I 19
0.048
0.167
0.024
0.286
0.333
0.190
0.476
0.744

(2

0,111

—0.048
0.214
0.143
0.167
0.024
0.000
0.024
0.167
0.143
0.143
0.792

G

0.028
0.139

—0.286
0.262
0.143
0.286
0.143
0.190
0.262
0.286
0.095
0.607

£4

0.028
0.167
0.250

—0.214
0.095
0.190
0.167
0.024
0.167
0.095
0.071
0.732

f5

O.I 11
0.167
0.278
0.306

—
0.095
0.405
0.143
0.071
0.214
0.119
0.286
0.857

f6

0.028
0.111
0.111
0.167
0.194_

0.119
0.071
0.119
0.190
0.524
0.071
0.792

f7

0.139
0.000
0.306
0.111
0.167
0.139

—
0.381
0.190
0.286
0.167
0.095
0.571

f8

0.083
0.139
0.167
0.111
0.111
0.167
0.472

—
0.214
0.143
0.119
0.143
0.696

B9

0.000
0.056
0.389
0.194
0.111
0.194
0.139
0.361

—0.190
0.167
0.333
0.839

BIO

0.139
0.056
0.333
0.056
0.056
0.056
0.639
0.583
0.333
^

0.357
0,167
0.827

B l l

0.083
0.083
0.333
0.083
0.194
0.250
0.250
0.444
0.472
0.389

—0.119
0.821

BI2

0.111
0.000
0.333
0.167
0.306
0.250
0.528
0.639
0.500
0.389
0.500

__

0.613

PC

0.882
0.889
0.583
0.799
0.819
0.882
0.639
0.688
0.521
0.736
0.660
0.611

Nine. Data above the diagonal is from Condition B {density increased for Figure 18). Data below the diagonal is from Condition A (density increased
for Figure fl).

the set used was {C, H, O, E, F, P); for Condition 2 it was {C, H, O, E,
U, Q}. Both sets of letters are shown in Figure 4. The context stimuli
(F and P) included in Condition 1 were chosen to increase local density
for the target letter E, whereas in Condition 2 Q and U were included
to increase the local density for O.

Procedure. Each subject participated in both Experiment 5 and 6,
with half being given the identification task first, and half being given
the discrimination task first. A subject saw the same context set of letters
in both experiments. The procedure was similar to that of Experiment
4. Subjects were tested individually in a dimly lit room, and the materi-
als were presented on a Megatek 5000 graphics display screen controlled
by a Data General Nova computer. The subject initiated trials with a
foot pedal and then responded to the stimulus pair by pressing either
the key marked "same" or the one marked "different."

Before the actual experiment began, subjects were shown the set of
six letters for their condition, and were instructed to look through the set
to familiarize themselves with the letters. For practice with the same-
different task, they were given 20 training trials at a 100-ms presentation
time. The stimuli used in this training task were the same letters used
in the actual experiment. When they had completed these training tri-
als, the testing phase began. A subject was presented with four blocks
of trials, each consisting of 120 trials: 60 "different" and 60 "same"
pairs. Pairs were presented in a separate random order for each block.
The presentation time for stimulus pairs was initially set at 40 ms, but

F

Figure 4 Letter stimuli used in Experiments 5 and 6. (The letters C, H,
E, and O were common to both conditions, in Condition I the context
letters F and P were also included, and in Condition 2 the letters Q and
U were included.)

the program controlling the experiment adjusted the presentation time
every 10 trials during the first block to arrive at a presentation time that
would result in a moderate number of errors (data from this first block
were not analyzed).

In a single trial, a subject initiated the trial with the foot pedal, and
the stimulus pair appeared briefly, followed by a masking pattern. Si-
multaneous with the appearance of the poststimulus masking pattern,
the set of six letters in the stimulus set appeared, randomly ordered, at
the bottom of the subject's screen. This was done both to ensure that
the context set remained salient for the subjects and to maximize com-
parability of the procedure with that of Experiment 6.

Results

Data from the first block were discarded, and the data from
the last three blocks were analyzed. The analysis examined the
average proportion of times a given pair of letters was confused
(i.e., false "same" responses). According to the density hypothe-
sis, in Condition 1 the confusability of the letter E with all other
frame letters should be decreased by the addition of the four
highly similar letters. Analogously, in Condition 2 the confusa-
bility of letter O with the other frame letters should be de-
creased.

Table 5 shows the confusion matrices for both conditions.
The comparison used to test for a density effect was

= CE,* - = C{£, C) + C(E. H) - C(O, C) - C(O,

where C(E, C) refers to the proportion of confusion errors (false
"same" responses) between the letter E and the letter C. The
difference in this measure between conditions was -0.100,
which is in the direction predicted by the density hypothesis but
is not significant, ;{58) = -0.264, p> .05.

Experiment 6

Experiment 6 was an identification task using the letter stim-
uli of Experiment 5. The subjects and materials used were the
same as for that experiment.
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Table 5
Discrimination Confusions Between Letters and Proportion

Correct (PC): Experiment 5

Letter

C
H
E
O

Q
u
PC

C

.300

.400

.300

.216

.150

.353

H

.284

—.184
.184
.167
.167

.880

E

.334

.267

—.200
.184
.200

.507

O

.284

.167

.050

—
.084
.084

.793

F

.134

.000

.084

.367

—
.284

.640

P

.217

.284

.100

.267

.267

—
.673

PC

.513

.860

.593

.607

.820

.793

—

Note. Data above the diagonal is from Condition 2 (density increased
for letter O). Data below the diagonal is from Condition 1 (density in-
creased for letter E).

Method

In this procedure subjects gave their identification responses by

means of six response keys. When the stimulus had been presented and
while a masking pattern remained on, the set of six letters that were
used in that condition appeared across the bottom of the screen, and

remained until the subject chose a response. This array served both as
a reminder of the context set and as a means of identifying the response
keys because the order of letters in the array (randomly assigned for each

subject) corresponded to the order of the response keys. For example, if

the letter H appeared as the leftmost element of the array, the correct
response key for H was the leftmost key.

As in Experiment 5, subjects were shown the set of six letters for their
condition and asked to familiarize themselves with the stimulus set.
Next they were given 20 training trials at a 100-ms presentation time.
When they had completed these training trials, the testing phase began.
A subject was presented with four blocks of trials, each consisting of 60

letter presentations. Letters appeared in separate random orders in each
block. As in the discrimination task, the presentation time for a stimu-

lus was initially set at 40 ms and adjusted every 10 trials during the first

block. Only the data from the last three blocks were analyzed.

ing hypothesis discussed in the introduction, the density of one

member of the stimulus pair may be more heavily weighted.

Because only one letter is presented in an identification task, it

seems clear that the density of this letter should be the salient

factor. Accordingly, the probability of an error should be

affected by the density in the region of the stimulus letter, but

not necessarily by the density in the region of the response letter.

It is possible to test separately for a stimulus density effect and

a response density effect. The stimulus effect can be tested by

the statistic

*s - PE(C) + PE(H) + FE(0) - Po(C) - /W) - PdiE).

Note that this statistic includes a comparison of Ft(O) and

Pd(E). The difference in the statistic for the two conditions was

-0.009, which is not significant, «(61) = -0.0131, p< .05.

Similarily, a density effect on the response letter can be tested

by

*R = PdE) + P»(E) + PdE) - PdO) - PH(0) - PE(0).

The difference in value for this statistic was —1.9303, t(6l) =

— 1.7846, p < .05. Thus, a significant effect of density is ob-

tained, but it is an effect of density in the region of the response

letter. The choice probabilities are not affected by the density

in the region of the stimulus letter, as predicted by the density

hypothesis in conjunction with the focusing hypothesis.

Summary of Discrimination and Identification Studies

Experiments 4-6 examined the influence of stimulus density

on confusion errors in perceptual tasks involving letter-like fig-

ures and actual letters. For the discrimination tasks (Experi-

ments 4 and 5), there was no significant effect of density on

the confusability of stimulus pairs. For the identification task of

Experiment 6, no effect of the density of stimuli in the region

of the stimulus letter was found, but a response density effect

was observed. This pattern of results suggests that density does

Results

Table 6 summarizes the identification errors made for each

letter. In order to facilitate comparison with the results of Ex-

periment 5, the identification errors were first analyzed as sym-

metrized confusions. That is, the two halves of the identification

error matrix were averaged to obtain a lower-half confusion ma-

trix. For example, the number of times E was given as the re-

sponse to H, PH(E), was averaged with the number of times H

was given as the response to E, Pf(H), to obtain a measure of

confusability, C(E, H), between the two letters. The density hy-

pothesis may then be tested for this data by the same compari-

son as for Experiment 5. The difference in the values of the com-

parison for the two conditions was -1.939, which is in the direc-

tion specified by the density hypothesis and is significant,

1(61 ) = -1.884, p < .05. This means that the confusability of E

with H and C was increased by adding letters (F and P) to the

set that were highly similar to E.

Analyzing identification errors as symmetrized confusions

does not distinguish between the effects of density of the stimu-

lus (presented) letter and of the response letter. Under the focus-

Table 6

Identification Errors for Letter Stimuli: Experiment 6

Letter

C
H
E
O
F
P

C
H
E
O
Q
U

C

.327

.007

.063

.027

.027

.010

C

.412

.015

.067

.036

.003

.012

H

.090

.803

.107

.120

.090

.057

H

.027

.773

.103

.073

.009

.067

E

.287

.070

.563

.003

.167

.027

E

.397

.076

.788

.021

.000

.000

0

.133

.013

.037

.827

.037

.030

O

.061

.045

.018

.403

.000

.070

F

.120

.063

.150

.010

.570

.097

Q

.048

.018

.003

.127

.964

.030

P

.043

.043

.080

.013

.110

.780

U

.055

.073

.021

.339

.024

.821

Note. Data in upper part of table is from Condition I (density increased
for letter E). Data in lower part is from Condition 2 (density increased
for letter O).
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not influence the perceived similarity of stimulus pairs, al-

though it may influence the process of selecting a response in

identification tasks.

Discussion

One way in which Krumhansl (1978) motivated the dis-

tance-density model was to point out its relation to range-fre-

quency theory (Birnbaum, 1974;Parducci, 1965, 1974), which

describes certain context effects in unidimensional judgment

tasks. In range-frequency theory; it is assumed that the spacing

of stimuli along the continuum can affect the rating given to a

single stimulus. In particular, subjects seem to make these rat-

ing category assignments so as to equalize the number of stimuli

assigned to each category. This means that if there is a high

frequency of stimuli with nearly equal magnitude somewhere

along the continuum, stimuli near the high end of this dense

region will receive higher ratings than they would otherwise,

and stimuli near the low end will receive lower ratings. In a

sense, the data show a "spreading out" of the dense region.

Krumhansl noted that if such a spreading out of dense regions

occurs in the perception of similarity relations, this effect would

show up in the proximity data as a density effect. However, it

has since been demonstrated (Mellers & Birnbaum, 1982) that

the context effects observed in unidimensional judgment are

not due to changes in subjects' perception of the stimuli, but

rather to a tendency by them to use different response categories

more or less equally often. That is, the frequency effect is a re-

sponse effect, not a stimulus effect. Thus, the range-frequency

findings offer no reason to expect an effect of density on per-

ceived similarity.

The pattern of results observed in the present studies sup-

ports this view. If density had an influence on perceived similar-

ity, then density effects should be observed consistently across

the different tasks. This was certainly not the case: No effect of

density was observed for the similarity rating and discrimina-

tion tasks. In the identification experiment, in which the tests

of a stimulus effect and a response effect can be separated, only

the density of the response letter seemed to have an influence.

To understand possible mechanisms for response-density effects

in identification data, it is necessary to consider the role of a

choice process in stimulus identification.

Models of Identification Performance

Most models of letter identification have explicitly recog-

nized the existence of a choice process operating in the selection

of a response in such a task. For example, Townsend and Lan-

don (1983) discussed five quantitative models of letter identifi-

cation and their application to letter recognition data: the con-

stant-ratio rule (CRR; Clarke, 1957; Egan, 1957; Luce, 1959;

Shepard, 1957), Luce's (1963) similarity-choice model, Town-

send's overlap (1971) and all-or-none (1978) models, and Naka-

tani's (1972) confusion-choice model. The CRR was originally

proposed as a general model of individual choice behavior, the

others specifically as models of stimulus identification. Each of

these last four models, however, incorporates an explicit choice

component based on the CRR. Takane and Shibayama (1986)

also compare several models in which the CRR is used to repre-

sent the choice component of stimulus identification.

In the models of Townsend (1971, 1978) and Nakatani

(1972), the process of stimulus identification is explicitly sepa-

rated into two sequential subprocesses: stimulus letter percep-

tion and response letter selection. Following Nakatani, such

models will be referred to as confusion-choice models. In these

models, recognition confusions are presumed to be the result

of an errorful perceptual process followed by a probabilistic

choice mechanism. The errorful recognition process has been

variously assumed to result in all-or-none recognition (Town-

send, 1971), in a set of pair-wise confusion states (Townsend,

1978), or in a multivariate normal distribution representing the

stimulus in a multidimensional stimulus space (Nakatani,

1972). Tests by Townsend and Landon (1982) indicated that

Nakatani's gave the best fit of the three confusion-choice

models.

By separating the recognition process into sequential pro-

cesses of stimulus perception and response selection, a confu-

sion-choice model offers a natural account of how response den-

sity effects might arise. In such a model, a stimulus is presented,

resulting (on a particular trial) in some percept. Given this per-

cept, the subject must choose the best or most likely response

from the set of valid alternatives. In order to understand how

the composition of the stimulus set, particularly local stimulus

density, might affect this response-selection phase, it is useful

to review certain results concerning the effect of stimulus-set

context on choice probabilities.

Choice Probabilities and Context Effects

Two well-known properties of choice data are particularly

relevant to understanding how density might affect response

probabilities in certain identification experiments. The first is

regularity. Regularity requires that adding members to a choice

set increase (or leave unchanged) the probability of choosing

any one of its members. That is, for choice sets A and B,AC.B,

the probability of choosing x from A must be greater than or

equal to the probability of choosing x from B: P(x, A) a P(x,

B). Regularity is a property derivable from most choice models

and is usually found to be satisfied in actual choice data (e.g.,

Becker, DeGroot, & Marshak, 1963;Tversky, 1972).

What is the relation between the regularity property and po-

tential response density effects in identification data? Consider

two identification experiments. In the first a particular set of

frame stimuli is used. In the second the same stimuli are in-

cluded, but the density is increased for one target stimulus by

the addition to the set of several highly similar context stimuli.

As applied to the identification data, regularity requires that the

probability of selecting any stimulus as a response cannot be

increased by the addition of the context stimuli; it must either

decrease or stay the same. In essence, regularity places a direc-

tional constraint on any effect of stimulus density achieved by

simply adding alternatives to the set, and this constraint is con-

sistent with the directional prediction of the density hypothesis.

Note that regularity does not predict that density necessarily

affects response probabilities, only that if the effect occurs it

must be in a particular direction.
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However, another well-established property of choice proba-

bilities does predict a response-density effect in identification

tasks. Rjr convenience, this property will be referred to as the

similarity effect. It was first noted in the well-known counterex-

ample of Debreu (1960; see also Tversky, 1972). The import of

these counterexamples is that the more similar members of the

set of alternatives are to x, the lower will be the probability of

choosing x relative to the probability of choosing any other

stimulus y. Such a pattern of choice probabilities violates the

property known as independence from irrelevant alternatives.

Numerous studies document such violations in choice proba-

bilities (Becker et al., 1963; Debreu, 1960; Townsend & Lan-

don, 1982; Tversky &Russo, 1969).

The similarity effect predicts changes in choice probabilities

with changes in local stimulus density. Accordingly, changes

would also be expected in the response probabilities of an iden-

tification task. Stated loosely, the similarity effect is that the ad-

dition of an alternative to a choice set "hurts" similar alterna-

tives more than dissimilar ones. That is, the more similar an

added alternative is to stimulus x, the lower will be the probabil-

ity of selecting response x (no matter what letter is actually pre-

sented). This is exactly the effect observed in the identification

data of Experiment 6. Adding context letters to increase the

density for the letter C had the effect of decreasing the overall

probability of responding "C". Similarly, increasing the density

for O decreased the overall probability of "O" as a response.

Thus, the assumption of standard models of stimulus identi-

fication that identification performance incorporates a choice

mechanism for response selection offers an explanation for the

finding that density can affect response probabilities. Therefore,

the results of the experiments reported here can be seen as con-

sistent with the general outline of these models. However, spe-

cific assumptions used in such models may be called into ques-

tion by the present data. In particular, the specific choice rule

used by the models reviewed above, the CRR, is unable to ac-

count for the similarity effect in choice data.

Less restrictive choice models can, however, account for the

similarity effect. Consequently, it seems useful to explore the

usefulness of variants of the confusion-choice model incorpo-

rating more sophisticated choice models, such as Tversky's

(1972) elimination-by-aspects model. One such discrete-fea-

ture version of a confusion-choice model is described in Corter

(1987). Another model for choice data that can account for the

similarity effect, and that is especially noteworthy in the present

application, is the wandering ideal point model (De Soete, Car-

roll, & DeSarbo, 1986). In this model, a subject is represented

as a point in a multidimensional stimulus space. This point is

termed the ideal point for the subject, and is assumed to follow

a multivariate normal distribution across trials. On a particular

trial, the subject chooses the stimulus closest to the sampled

ideal point. This model, proposed to account for pair-wise

choice data, could be generalized in a natural way to identifica-

tion data. In such an extension each stimulus letter (rather than

each subject) would be represented by a multivariate normal

ideal point distribution. The presentation of a stimulus letter

would sample a point from the corresponding distribution, and

the response chosen would be the stimulus with centroid closest

to the sampled point. Note that as a psychological account of

identification performance this extension of the wandering ideal

point model would closely resemble Nakatani's model, al-

though the models would differ in certain specific details.
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