Exploring Teachers' Categorizations for and Conceptions of Combinatorial Problems

Nick Wasserman
Southern Methodist University

K-I2 Combinatorics

- K-I2 Mathematics Education has had an increased emphasis on Probability and Statistics in the past two decades
- While counting is fundamental to calculating probability and understanding statistics, introductory combinatorics (e.g., permutations and combinations) are often tangential topics, only superficially discussed (if at all) in the K-I2 curriculum.
- Is this due to rapid pace of curriculum? Teachers?

Expert Combinatorialists

- Counting is simple enough; yet counting problems span the spectrum of difficulty
- Expert combinatorialists have identified ways of organizing/categorizing different counting problems (e.g., Benjamin, 2009); yet doing so relies on a variety of modeling techniques for problems (Batanero, Navarro-Pelayo \& Godino, I997)

Combinatorial Organization

Selecting k objects from n distinct objects

	Ordered (permutations)	Unordered (combinations)
Without repetition	Arrangements $(n!-k)!$ $(n \cdot(n-1) \cdots \cdots(n-k+1)$	$\left.\begin{array}{l}\text { Subsets } \\ k\end{array}\right)=\frac{n!}{k!(n-k)!}$
With repetition	Sequences $n^{k}=$$\quad$Multisubsets $k \cdot n \cdot \ldots \cdot n$	$\left(\binom{n}{k}\right)=\binom{k+n-1}{n-1}$

Novice Combinatorialists

- Experts may recognize the characteristics of combinatorial problems according to the 2×2 matrix distinctions, and understand how to model them accordingly
- Yet do those learning to think combinatorially make the same connections or distinctions?
- While many problems can be organized along the 2×2 matrix, modeling them in ways that fit those descriptions may be unnatural \& difficult

A Problem

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?

Modeling Difficulties

- Technically, this is a multisubset problem (unordered, with repetition). However, to model this as a multisubset requires using letters to represent the four distinct digits, like T=tens digit. One answer in this model may be:TTTHTOTOO (I53)
- So if the expert categorization can be difficult to utilize when solving, how can we better capture a learners' development of combinatorial thinking?

Actor-Oriented Transfer

- Identifying ways to apply knowledge from previously learned problems to another context is generally known as transfer
- Actor-oriented transfer (AOT), characterized by Lobato (2003), shifts the perspective regarding transfer from an expert's view to a learner's vantage point.

Actor-Oriented Transfer

- Lockwood (201I) argues that AOT may be particularly useful for combinatorial thinking.
- AOT pays attention to the ways novices draw on their knowledge to solve problems in another context.
- Given the structural and modeling aspects of combinatorics, documenting examples of AOT from novices, should help understand how combinatorial thinking develops.

Research Question

- How do middle and secondary mathematics teachers, who are also novice combinatorialists, categorize and conceptualize different combinatorial problems?

Framework

New Context Problems

Disconnected

Framework

New Context Problems
AOT

Disconnected

Framework

Documenting instances of PRODUCTIVE and NON-PRODUCTIVEAOT informs the development of combinatorial thinking

Framework

Documenting instances of PRODUCTIVE and NON-PRODUCTIVEAOT informs the development of combinatorial thinking

Framework

Methodology

- Two focus groups (e.g., Berg \& Lune, 2012) conducted with practicing middle and secondary mathematics teachers ($\mathrm{N}=3$; $\mathrm{N}=4$)
- None had taken a combinatorics/discrete course
- In conjunction with graduate mathematics education course (Teaching Probability \& Statistics)

Methodology

- Introduction (~ 90 minutes) in course consisted of:
- Introduction and instruction on: the addition principle; multiplication principle; factorial notation; and (n_{k}) notation
- Approaches and solutions to six combinatorics problems (relatively common examples, spanning all four problem types)
- NOTE: various strategies for solving problems were introduced, but no structural characteristics were mentioned (e.g., order matters, etc.)

Methodology

- After introduction, 7 study participants were randomly assigned to one of two focus groups (~ 120 minutes)
- They were asked to work on an assortment of 12 problems, ranging in type and complexity
"Answer each of the problems and organize them into 'groups' of problems that have similar methods for solving. For each group of problems, provide a brief description of how and why the problems in that group are similar."
- Researcher took field notes about important comments or connections made by participants, at times asking questions to uncover their thinking (*next time, SmartPens)

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams 1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	$\begin{aligned} & \text { Problems } \\ & \hline \text { States (Texas) } \\ & \text { Netflix } \\ & \text { Plane Routes } \end{aligned}$	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committee s	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams 1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams1 Gift Cards 4-letter words [missin 3]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1	Group 2		
Arrangements (Ordered, without repetition)	Problems States Netflix	Problems Plane Routes	States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one piace at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams 1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different nositions -Order matters -One element can be repeated (people getting more than one card)	Problems Password MC Exams1 Gift Cards 4-letter words [missing]	Descrintion -Certain amount of spaces and each space has the same number of options. -Options can be repeated.

Overall Findings

- Permutation Problems

Table 3: The groups' categories and descriptions for permutation problems

Type	Problems	Group 1		Group 2	
Arrangements (Ordered, without repetition)	Problems States Netflix Plane Routes	Problems States (Texas) Netflix Plane Routes	Description -Each thing can only be in one place at a time (no repeats within set) -Order matters	Problems States Netflix Plane Routes M/F Committees	Description -The order of choices matters. -Choices cannot be repeated.
Sequences (Ordered, with repetition)	Problems Password MC Exams1 Gift Cards 4-letter words Vowel	Problems Password MC Exams 1 Gift Cards 4-letter words [in Cases] Marbles	Description -Things being distributed to different positions -Order matters une element can be repeated (people getting more than one card)	Problems Password MC Exams1 Gift Cards 4-letter words [missing]	Description -Certain amount of spaces and each space has the same number of options. -Options can bo repeated.

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

Type	Problems	Group 1		Group 2	
Subsets (Unordered, without repetition)	Problems Handshakes Supreme Court Voting MC Exams2 M/F Committees	$\frac{\text { Problems }}{[\mathrm{missing}]}$ Supreme Court Voting [did not do] [did not do] Hot Dogs	Description -How many different positions each element can occupy (9 choose 6)	Problems Handshakes Supreme Court Voting MC Exams2 [in Arrangement]	Description -Take the groups and choose a certain number. Using the "group" choose "number" gets rid of the duplicates. The duplicates exist because order does not matter.
Multisubsets (Unordered, with repetition)	Problems Hot Dogs Summed Digits Skittles Marbles Pizza Toppings	Problems [in Subset] [did not do] [did not do] [in Sequence] [did not do]		Problems Hot Dogs [did not do] Skittles [did not do] [missing]	Description -Broke into groups to account for no duplicates. The barriers separated into groups. Barriers made choosing easy and allowed for choosing all of one type.

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

| Type | Problems | Group 1 | Group 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

Type	Problems	Group 1		Group 2	
Subsets (Unordered, without repetition)	Problems Handshakes Supreme Court Voting MC Exams2 M/F Committees	$\frac{\text { Problems }}{[\mathrm{missing}]}$ Supreme Court Voting \quad [did not do] [did not do] Hot Dogs	Description -How many different positions each element can occupy (9 choose 6)	Problems Handshakes Supreme Court Voting MC Exams2 [in Arrangement]	Description -Take the groups and choose a certain number. Using the "group" choose "number" gets rid of the duplicates. The duplicates exist because order does not matter.
Multisubsets (Unordered, with repetition)	Problems Hot Dogs Summed Digits Skittles Marbles Pizza Toppings	$\begin{aligned} & \hline \text { Problems } \\ & \text { [in Subset] } \\ & \text { [did not do] } \\ & \text { [did not do] } \\ & \text { [in Sequence] } \\ & \text { [did not do] } \end{aligned}$		Problems Hot Dogs [did not do] Skittles [did not do] [missing]	Description -Broke into groups to account for no duplicates. The barriers separated into groups. Barriers made choosing easy and allowed for choosing all of one type.

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

Type	Problems	Group 1		Group 2	
Subsets (Unordered, without repetition)	Problems Handshakes Supreme Court Voting MC Exams2 M/F Committees	Problems [missing] Supreme Court Voting [did not do] [did not do] Hot Dogs	Description -How many different positions each element can occupy (9 choose 6)	Problems Handshakes Supreme Court Voting MC Exams2 [in Arrangement]	Description -Take the groups and choose a certain number. Using the "group" choose "number" gets rid of the duplicates. The duplicates exist because order does not matter.
Multisubsets (Unordered, with repetition)	Problems Hot Dogs Summed Digits Skittles Marbles Pizza Toppings	rrobiems [in Subset] [did not do] [in Sequence] $]$ [did not do]		Problems Hot Dogs [did not do] Skittles [did not do] [missing]	Description -Broke into groups to account for no duplicates. The barriers separated into groups. Barriers made choosing easy and allowed for choosing all of one type.

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

Type	Problems	Group 1		Group 2	

Overall Findings

- Combination Problems

Table 4: The group's categories and descriptions for combination problems

Type	Problems	Group 1		Group 2	
Subsets (Unordered, without repetition)	Problems Handshakes Supreme Court Voting MC Exams2 M/F Committees	$\frac{\text { Problems }}{[\text { missing] }}$ Supreme Court Voting \quad [did not do] [did not do] Hot Dogs	Description -How many different positions each element can occupy (9 choose 6)	Problems Handshakes Supreme Court Voting MC Exams2 [in Arrangement]	Description -Take the groups and choose a certain number. Using the "group" choose "number" gets rid of the duplicates. The duplicates exist because order coes not matter.
Multisubsets (Unordered, with repetition)	Problems Hot Dogs Summed Digits Skittles Marbles Pizza Toppings	Problems [in Subset] [did not do] [did not do] [in Sequence] [did not do]		Problems Hot Dogs [did not do] Skittles [did not do] [missing]	Description -Broke into groups to account for no duplicates. The barriers separated into groups. Barriers made choosing easy and allowed for choosing all of one type.

- Group I also had an additional category with Vowels \& MC Exams2
- Their characterization was essentially that, for these problems, you have to consider Cases (which is true)

Preferred Vantage Point

- How many ways can you distribute a $\$ 1, \$ 2, \$ 5, \$ 10$, and $\$ 20$ gift card 8 friends. (i.e., you have 5 gift cards to distribute)

Preferred Vantage Point

- How many ways can you distribute a $\$ 1, \$ 2, \$ 5, \$ 10$, and $\$ 20$ gift card 8 friends. (i.e., you have 5 gift cards to distribute)
- Both groups began by drawing 8 slots (each person)
- Their attempts included (8 choose 5)
- "but then someone could get more than one"
- and 5^{8}
- "but then the last person wouldn't have 5 choices"

Preferred Vantage Point

- Trying to count which person receives which gift card(s) causes modeling difficulties: each person could have anywhere from 0 to 5 gift cards, and sequential models (i.e., eight slots) make the result for subsequent persons dependent on previous ones.
- To solve it from this perspective would require accounting for each of the 7 distinct integer partitions of 5 , and then distributing the gift cards according to these possible partitions, which becomes quite complex.

Preferred Vantage Point

- It was not until the participants shifted from the perspective of the people, who are receiving gift cards, to the perspective of the gift cards, which are being distributed, that progress was made.

Preferred Vantage Point

- It was not until the participants shifted from the perspective of the people, who are receiving gift cards, to the perspective of the gift cards, which are being distributed, that progress was made.

Preferred Vantage Point

- It was not until the participants shifted from the perspective of the people, who are receiving gift cards, to the perspective of the gift cards, which are being distributed, that progress was made.

Preferred Vantage Point

- Combinatorics problems frequently have two perspectives from which to model (e.g., n objects and k objects)
- functions: input \rightarrow output (other direction can be difficult)
- It may be that students bring a particular preferred perspective to some problems (that is, for whatever reason hard to overcome/switch), that can cause difficulties for them in solving

Approaching Multisubsets

- How many ways are there to make a pizza with I topping, if the choices for toppings are: Pepperoni, Olives, Sausage, Ham, Mushrooms, and Anchovies?
- 2 toppings (double toppings allowed)?
- 3 toppings (double and triple toppings allowed)?
- 4 toppings ?

Approaching Multisubsets

- The group's approach to solving the 2

- Generally, however, these problems are Multisubset problems
- Select 4 toppings from 6 distinct toppings (can repeat toppings): PPOS \& PSOP are same (unordered)

Approaching Multisubsets

- The group's approach to solving the 2 topping pizza problem was: $\begin{aligned} & 2 \text { toppings: }\binom{6}{2}+\binom{6}{1}\left(\begin{array}{l}\text { (double) topping } \\ 1 \\ 1\end{array}\right)\end{aligned}$
- Generally, however, these problems are Multisubset problems
- Select 4 toppings from 6 distinct toppings (can repeat toppings): PPOS \& PSOP are same (unordered)

Approaching Multisubsets

- The group's approach to solving the 2

- Generally, however, these problems are Multisubset problems
- Select 4 toppings from 6 distinct toppings (can repeat toppings): PPOS \& PSOP are same (unordered)

Pepperoni
Olives
Sausage
Ham

Approaching Multisubsets

- The group's approach to solving the 2

- Generally, however, these problems are Multisubset problems
- Select 4 toppings from 6 distinct toppings (can repeat toppings): PPOS \& PSOP are same (unordered)

Pepperoni

Sausage
Ham
Mush

Approaching Multisubsets

- The group's approach to solving the 2

- Generally, however, these problems are Multisubset problems
- Select 4 toppings from 6 distinct toppings (can repeat toppings): PPOS \& PSOP are same (unordered)

Pepperoni

Sausage
Ham

Approaching Multisubsets

- Interestingly, their approach to other Multisubset problems mirrored their work on the pizza problem.
- For the 2 topping pizza problem, they split it into two simpler cases: I) two different toppings (6 choose 2); and 2) one double topping (6 choose I)
- We return to their work on the Summed Digits Problem to illustrate their similar approach

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
- Case I: the " 9 " is contained within one digit. There are (4 choose I) of those: 9000, 900, 90, 9.
- Case 2: the " 9 " is split between two digits. There are (4 choose 2) pairs of digits, and each of those have 8 (ordered) possibilities: (I,8), (2,7), (3,6), $(4,5),(5,4),(6,3),(7,2),(8, I)$.
- So picking the Thousands and Tens digits: 1080, 2070, $3060,4050,5040,6030,7020,8010$

Approaching Multisubsets

- Case 3 : the " 9 " is split between three digits. There are (4 choose 3) pairs of digits. There are then 7 partitions of $9:(7, I, I),(6,2, I),(5,2,2),(5,3, I),(4,3$, 2), ($4,4,1$), $(3,3,3)$; however, the number of ways to "order" the partitions are different (e.g., there are 3 ways to order ($7,1, I$), 6 ways to order ($5,3,1$) and only I way to order $(3,3,3)$). This makes a total of 28 ways to "order" these.
- Case 4: similar difficulties...four digits

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?

Case I (split among I digit): $\binom{4}{1}$
Case 2 (split among 2 digits): $\binom{4}{2} \cdot 8$
Case 3 (split among 3 digits): $\binom{4}{3} \cdot 28$

Case 4 (split among 4 digits): $\binom{4}{4}$?

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
Case I (split among I digit): $\binom{4}{1} \quad\binom{4}{1}\binom{8}{8}$
Case 2 (split among 2 digits): $\binom{4}{2} \cdot 8 \quad\binom{4}{2}\binom{8}{7}$
Case 3 (split among 3 digits):

$$
\binom{4}{3} \cdot 28 \quad\binom{4}{3}\binom{8}{6}
$$

Case 4 (split among 4 digits): $\binom{4}{4} \cdot ? \quad\binom{4}{4}\binom{8}{5}$

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?

Case I (split among I digit): $\binom{4}{1}$	$\binom{4}{1}\binom{8}{8}$	Case I (I double topping): $\binom{6}{1}\binom{1}{1}$
Case 2 (split among 2 digits): $\binom{4}{2} \cdot 8$	$\binom{4}{2}\binom{8}{7}$	Case 2 (2 toppings):
Case 3 (split among 3 digits): $\left(\begin{array}{l}6 \\ 4 \\ 2\end{array}\right) \cdot\binom{1}{0}$		
Case 4 (split among 4 digits):	$\left(\begin{array}{l}4 \\ 4 \\ 3\end{array}\right) \cdot\binom{8}{4}$	$\binom{4}{4}\binom{8}{5}$

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?

Case I (split among I digit): $\binom{4}{1}$	$\binom{4}{1}\binom{8}{8}$	Case I (I double topping): $\binom{6}{1}\binom{1}{1}$
Case 2 (split among 2 digits): $\binom{4}{2} \cdot 8$	$\binom{4}{2}\binom{8}{7}$	Case 2 (2 toppings):
Case 3 (split among 3 digits): $\left(\begin{array}{l}6 \\ 6 \\ 2\end{array}\right) \cdot\binom{1}{0}$		
Case 4 (split among 4 digits):	$\left(\begin{array}{l}4 \\ 4 \\ 3\end{array}\right) \cdot\binom{8}{4}$	$\binom{4}{4}\binom{8}{5}$

In general, their approach to Multisubset problems, selecting k from n distinct objects, can be generalized as: $\sum_{i=0}^{k-1}\binom{n}{k-i}\binom{k-1}{i}$

Approaching Multisubsets

- Technically, this is a Multisubset (with repetition; unordered), where we are selecting $9(k)$ from 4 (n) distinct objects. The "distinct" objects are place values ($\mathrm{O}=$ ones; $\mathrm{T}=$ =tens; $\mathrm{H}=$ hundreds; $\mathrm{M}=$ Thousands).
- In this case, the "order" does not matter, each number is represented by the amount of $\mathrm{O}, \mathrm{T}, \mathrm{H}$, and M's that are selected:
TTTMTTMTT = TTTTTTTMM = 2,070

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
- Stars \& Bars is perhaps the best Model | | | | | | | | |

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
- Stars \& Bars is perhaps the best Model

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
- Stars \& Bars is perhaps the best Model

Approaching Multisubsets

- How many numbers between I and I0,000 have the sum of their digits equal to 9 ?
- Stars \& Bars is perhaps the best Model

Total: I2 choose 3

Conclusions

- Generally, teachers had more success categorizing and characterizing Permutation (ordered) problems than Combination (unordered) problems
- A preferred vantage point may impact/hinder productive approaches to solving combinatorics problems; learning combinatorial reasoning may involve being able to shift perspectives
- Splitting Multisubset problems into cases (with more natural models) was students' tendency; this may suggest ways to help students transition and scaffold their thinking to more helpful (and computationally easier) approaches

Thank You!

Nick Wasserman nwasserman@smu.edu

