Systems-level Content Development:

Æstablishing Learning Progressions

RME Research to Practice Conference Nick Wasserman, Janie Schielack 24 February 2012

A Math Question

Which of the following are correct representations of $2 / 5 ?$

A. I, III only
B. I only
C. II only
D. I, II, III

What are Learning Progressions?

$\begin{gathered} \text { STD } \\ \text { or } \\ \text { EC } \\ \text { Code } \end{gathered}$	Eligible Content	Grades										Algebra I		Algebra II		Geometry	
		K	1	2	3	4	5	6	7	8	HS			\square			
Numbers and Operations: Operations on numeric and symbolic expressions																	
M3A111	wheik forber lve llougt 5.505).																
MaA112																	
M3A133	Count a collection of blib and caira lema than $53.00 /$ senne. 23 certh. 234 or 30.15																
MaA133	$\$ 2.00$ thange given \|penny, nickel Sime, tuarter, Salar).																
MaA112	Write the fraction or secimal, induding mased number. Which servesponds tis a brawing or upt-Ne singififation bericisyty																
	Witch the standard number form ts the word form of decinal rambers ithrough the tevids placel.																
Man:14	Arte whole numbers in espanced, atundad andiot wort form thriegh 5 diefts lexample at standint lis expindet 																
MaA123	ocileNAerthy frecioss or Becmals on a hather line 'droimal and fractions through the Seeths-da nat mia whentunt fermens																
MSA.121	Wifich the stindend form to the wond fave of decimal Nawbers thriceh the Handephis																
M5A132	Sondwertis.																
MSALA1	Lecalefidentily integers in a number line lereater than on e9wal te ted																
M5A323	tombube accurabsly without a caiculabor \|mutiplima ap te 2 Jets ingle-det eiveprs en minioles of 35 -whie tumben through thounands and decimaln throuph 						-										
M5A.3.1	find the treatelt Common facter ocip of fwa numben throceh Sol and/or use the $8 C 5$ to uimplify fractions																
M5A.132	twe numbers through sil indior une iomene denoninure of timpfrations \qquad																
MSA:33																	
MRatil	Cowert telween fractiom, evomib indior peruents \|e.s. 																
M2A122	iecuce/identi/t Jecimas, fractions, mied surbers and/ar intrgers on a number line lor he antleamenctelloti																
M2A21.																	
	Salculate andfor apsly unt ranes or uns piries feowinating Secimal throwh the Hundevech plese erlill.																

What are Learning Progressions?

LEARNING TRAJECTORY DISPLAY COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADES 6-8 Ratio and Proportional Relationships and Percent

What are Learning Progressions?

4	
Counting and Cardinality	
Several progressions originate in knowing number names and the count sequence. ${ }^{\text {KCC. }}$	
From saying the counting words to counting ouf objects Students usually know or can learn to sey, the counting words up to a given number before they can use these numbers to count objects or to tell the number of objects. Studenss become fluent in saying the count sequence se that they have enough attertion to focus on the pairings imolved in counting objects. To coynt a group of objects, they pair each word said with one object ${ }^{\text {KCC }} 4$ This is usually (ecilitated by an indicating act (such as pointing to objects or moving them) that keeps each word said in time paired to one and only one object located in space. Counting objects arranged in a line is easiest, with more proctice, students learn to count objects in more difficult arrangements, such as rectangular arrays (they need to ensure they reach every row or column and do not repeat rows or columns): circles (they need to stop just belore the object they started with); and scattered configurations (they need to make a single path through all of the objects). ${ }^{\mathrm{KCCS}}$ Later, students can count out a given number of objects ${ }^{\mathrm{KCC5}}$, which is more difficult than just counting that many objects, because counting must be fluent enough for the student to heve enough attertion to remember the number of objects that is being counted out	KCC4 Undertard the netationship tetween runbers and quarttes; cerrect courting to castinity. a when countrg objices, say he number names in the stavderd ovee, pling oach obiest whe one and ony une nurber rave and esch rumber rome with ore and onty one cbiect. ${ }^{\text {K.CC5 }}$ Court 10 avswer how many' questors abeut as may as 20 pinge arayed in a ine a netangiar aray. or a dirich. of
From subitizing to single-digit arithmetic fluency Students come to quickly recognize the cardinalities of small groups withous having to count the objects this is called perceptual subitiring. Perceptual subitiaing develops into conceptual subirizing-recognizing that a collection of objects is composed of two subcollections and quickly combining their cardinalities to find the cardinality of the collection (eg, seeing a set as two subsets of cardindity 2 and saying "four') Use of conceptual subitizing in adding and subtracting small numbers progresses to supporting steps of more advanced methods for adding, subtracting, multiplying, and dividing single-digit numbers (in several OA standards from Grade 1 to 3 that culminate in single-digit fluency).	
From counting to counting an Students understand that the last number name satd in counting tells the number ol objects counted. KCC: 6 Prior to resching this understanding, a student who is asked 'How many kittens? may regard the counting performance itsell as the answer, instead ol answering with the cardinality of the sec. Experience with counting allows students to discuss and come to understand the second part of KCC4b-that the number of objects is the same regardiess of their arrangement or the order in which they were counted. This connection will continue in Crade 1 with the	KCC5 Undentard the newtonatio between nunbers and quarties; cerrect courting to castruity. b Undentund par pe last runber nome swid wis peren. ber colobipcts courted. The nurber of obipats is the same regurfess of thei arargemert or fhe order in which tivy weve ceurted
Draft 5(2912011, comment ot commoncaretools. wordpress.com.	

What are Learning Progressions?

Developmental Levels for Recognizing Number
 and Subitizing (Instantly Recognizing)

Age Range	Level Name	Level	Description
2	Small Collection Namer	1	Names groups of one to two, sometimes three. For example, shown a pair of shoes, child says "Two shoes."
3	Maker of Small Collections	2	Nonverbally makes a small collection (no more than 4, usually 1-3) with the same number another collection. For example, when shown a collection of 3 3, makes another collection of 3.
4	Perceptual Subitizer to 4	3	Instantly recognizes collections up to 4 when briefly shown and verbally names the number of items. For example, when shown 4 objects briefly, says "four."
5	Perceptual Subitizer to 5	4	Instantly recognize briefly shown collections up to 5 and verbally name the number of items. For example, when shown 5 objects briefly, says "5."
5	Conceptual Subitizer to 5+	5	Verbally labels all arrangements to about 5, when shown only briefly. For example, says "Five! Why? Because I saw three and two and so I said five."

Age Range	Level Name	Level	Description
5	Conceptual Subitizer to 10	6	Verbally label most briefly shown arrangements to 6, then up to 10, using groups. For example, says, "In my mind, I made two groups of 3 and one more, so 7."
6	Conceptual Subitizer to 20	7	Verbally label structured arrangements up to 20, shown only briefly, using groups. For example, says, "I saw three fives, so 5, 10, 15."
7	Conceptual Subitizer with Place Value and Skip Counting	8	Verbally label structured arrangements shown only briefly, using groups, skip counting, and place value, For example, says, "I saw groups of ten and twos, so 10, 20, 30, 40, 42, 44, 46...46!"
$8+$	Conceptual Subitizer with Place Value and Multiplication	9	Verbally label structured arrangements shown only briefly, using groups, multiplication, and place value. For example, says, "I saw groups of ten and threes so I thought, five tens is 50 and four threes is 12, so 62 in all."

Our definition of a

 Learning Progression
Our definition of a Learning Progression

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals

Our definition of a Learning Progression

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Progress Variables (e.g. core concepts) that are developed over time

Our definition of a Learning Progression

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Progress Variables (e.g. core concepts) that are developed over time
3. Intermediate Levels of Achievement that progress toward mastery

Our definition of a

 Learning ProgressionA Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Progress Variables (e.g. core concepts) that are developed over time
3. Intermediate Levels of Achievement that progress toward mastery
4. Learning Performances at each Level that articulate students' performance capability

Our definition of a

 Learning ProgressionA Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Progress Variables (e.g. core concepts) that are developed over time
3. Intermediate Levels of Achievement that progress toward mastery
4. Learning Performances at each Level that articulate students' performance capability
5. Assessments that measure student development along the progression

A Science example

Solar System Progression:

 from Wilson (2009)Description

Level

Student is able to put the motions of the Earth and Moon into a complete description 5. of motion in the Solar System which explains:

- the day/night cycle
- the phases of the Moon (including the illumination of the Moon by the Sun)
- the seasons

Student is able to coordinate apparent and actual motion of objects in the sky. Student knows that

- the Earth is both orbiting the Sun and rotating on its axis
- the Earth orbits the Sun once per year
- the Earth rotates on its axis once per day, causing the day/night cycle and the appearance that the Sun moves across the sky
- the Moon orbits the Earth once every 28 days, producing the phases of the Moon
COMMON ERROR: Seasons are caused by the changing distance between the Earth and Sun.

COMMON ERROR: The phases of the Moon are caused by a shadow of the planets, the Sun, or the Earth falling on the Moon.
Student knows that:

- the Earth orbits the Sun
- the Moon orbits the Earth
- the Earth rotates on its axis

3 However, student has not put this knowledge together with an understanding of apparent motion to form explanations and may not recognize that the Earth is both rotating and orbiting simultaneously,
rotating and orbiting simultaneously,
COMMON ERROR: It gets dark at night because the Earth goes around the Sun once a day.
Student recognizes that:

- the Sun appears to move across the sky every day
- the observable shape of the Moon changes every 28 days

Student may believe that the Sun moves around the Earth.
COMMON ERROR: All motion in the sky is due to the Earth spinning on its axis.
COMMON ERROR: The Sun travels around the Earth.
COMMON ERROR: It gets dark at night because the Sun goes around the Earth once a day.
COMMON ERROR: The Earth is the center of the universe.
Student does not recognize the systematic nature of the appearance of objects in the
sky. Students may not recognize that the Earth is spherical.
COMMON ERROR: It gets dark at night because something (e.g., clouds, the atmosphere, "darkness") covers the Sun.
COMMON ERROR: The phases of the Moon are caused by clouds covering the Moon.
COMMON ERROR: The Sun goes below the Earth at night.
No evidence or off-track

A Math example

Equipartitioning:
 Important for rational number \&e fraction development

```
Case Equipartitioning Progress Variable
    1.8m objects shared among p people, m>p
    1.7 m objects shared among p people, p>m
    1.6 Splitting a continuous whole object into odd # of parts ( }n>3\mathrm{ )
    1.5 Splitting a continuous whole object among 2n people, }n>2,&2n\not=\mp@subsup{2}{}{i
    1.4 Splitting continuous whole objects into three parts
    1.3 Splitting continuous whole objects into 2}\mp@subsup{2}{}{n}\mathrm{ shares, with }n>
    A 1.2 Dealing discrete items among p=3-5 people, with no remainder; mn objects, }n=3,4,
    A, B 1.1 Partitioning using 2-split (continuous and discrete quantities)
```


MStar Goal

- Create a Diagnostic Assessment for struggling learners
- Develop and Use Learning Progressions as the framework for Diagnostic
- Better understand "why" students struggle, not "what" they struggle with
- Some of the issues

Your Turn

Learning Goal:

For students to be able to represent a variety of number patterns with tables, graphs, words, and symbolic rules

Your Turn

BELOW PROFICIENCY			PROFICIENT	ADVANCED
Less Complex		Complex		
The student will:				
- Determine the next 3 valuesimuagiven sequence of numbers (e.g., given the sequence " $3,7,11$, 15 ..." conclude that the next three values will be 19,23 , and 27).	- Organize the values in a given sequence using a table and/or graph (e.g., where " x value" represents the placement in the sequence (i.e., 1 for the 1st term, 2 for the 2nd term, etc.) and the y -value represents the value of the term). [NOTE: Include different kinds of patterns, such as numerical, spatial, and recursive.]	- Organize the values in a given sequence using a table and/or graph and determine the recursive pattern in the sequence (e.g., given the sequence " $3,7,11,15 \ldots$.." conclude that the next number is obtained by adding 4 to the previous value)	- Organize the values in a given sequence using a table and/or graph and be able to state an explicit rule to find the value of the nth term either symbolically or verbally (e.g., given the sequence " 3,7 , 11, 15 ..." conclude that the rule is $\mathrm{y}=4 \mathrm{x}-1$, or an equivalent form, or verbally describing that you have to multiply the term number by 4 and then subtract 1).	- Explain how a table of values can be used to determine whether a function is linear or nonlinear. Explanation should include an example to demonstrate each.

Your Turn

BELOW PROFICIENCY			PROFICIENT	ADVANCED
Less Complex		Complex		
The student will:				
- Determine the next 3 values in a given sequence of numbers (e.g., given the sequence " $3,7,11$, 15 ..." conclude that the next three values will be 19,23 , and 27).	- Organize the values in a given	- Organize the values in a given sequence using a table and/or graph and determine the recursive pattern given the sequence "3, 7, 11, $15 \ldots$..." conclude that the next number is obtained by adding 4 to the previous value)	- Organize the values in a given sequence using a	- Explain how a table of values can be used to determine whether a function is linear or nonlinear. Explanation should include an example to demonstrate each.
	sequence using a table and/or graph			
	(e.g., where " x value" represents		and be able to state an explicit	
	the placement in the sequence (i.e.,		rule to find the value of the nth	
	1 for the 1st term,		term either	
	term, etc.) and the		verbally (e.g.,	
	y-value represents		given the	
	the value of the term). [NOTE:		sequence " 3,7 , 11, $15 \ldots$.."	
	Include different		conclude that the	
	kinds of patterns, such as numerical,		rule is $\mathrm{y}=4 \mathrm{x}-1$, or an equivalent	
	spatial, and		form, or verbally	

Your Turn

BELOW PROFICIENCY			PROFICIENT	ADVANCED
Less Complex The student will:		More Complex		
	The student will:	The student will:	The student will:	The student will:
- Determine the next 3 values in a given sequence of numbers (e.g., given the sequence " $3,7,11$, 15 ..." conclude that the next three values will be 19,23 , and 27).	- Organize the values in a given sequence using a table and/or graph (e.g., where " x value" represents the placement in the sequence (i.e., 1 for the 1st term, 2 for the 2nd term, etc.) and the y-value represents the value of the term). [NOTE: Include different kinds of patterms, such as numerical, spatial, and recursive.]	- Organize the values in a given sequence using a table and/or graph and determine the recursive pattern in the sequence (e.g., given the sequence " $3,7,11,15 \ldots$.." conclude that the next number is obtained by adding 4 to the previous value)	- Organize the values in a given sequence using a table and/or graph and be able to state an explicit rule to find the value of the nth term either symbolically or verbally (e.g., given the sequence " 3,7 , 11, 15 ..." conclude that the rule is $y=4 x-1$, or an equivalent form, or verbally describing that you have to multiply the term number by 4 and then subtract 1).	- Explain how a table of values can be used to determine whether a function is linear or nonlinear. Explanation should include an example to demonstrate each.

Your Turn

Your Turn

BELOW PROFICIENCY			PROFICIENT	ADVANCED
Less Complex		More Complex		
	The student will:	The student will:	The student will:	The student will:
- Determine the next 3 values in a given sequence of numbers (e.g., given the sequence " $3,7,11$, 15 ..." conclude that the next three values will be 19,23 , and 27).	- Organize the values in a given sequence using a table and/or graph (e.g., where " x value" represents the placement in the sequence (i.e., 1 for the 1st term, 2 for the 2nd term, etc.) and the y-value represents the value of the term). [NOTE: Include different kinds of patterns, such as numerical, spatial, and recursive.]	- Organize the values in a given sequence using a table and/or graph and determine the recursive pattern in the sequence (e.g., given the sequence " $3,7,11,15 \ldots$.." conclude that the next number is obtained by adding 4 to the previous value)	- Organize the values in a given sequence using a table and/or graph and be able to state an explicit rule to find the value of the nth term either symbolically or verbally (e.g., given the sequence " 3,7 , 11, $15 \ldots$.." conclude that the rule is $\mathrm{y}=4 \mathrm{x}-1$, or an equivalent form, or verbally describing that you have to multiply the term number by 4 and then subtract 1).	- Explain how a table of values can be used to determine whether a function is linear or nonlinear. Explanation should include an example to demonstrate each.

How do LPs help?

How do LPs help?

Which of the following are correct representations of $2 / 5 ?$

A. I, III only
B. I only
C. II only
D. I, II, III

How do LPs help?

> ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. $1 / 2,1 / 4$), and use "common" fractions to estimate magnitude or distance.

How do LPs help?

| ii. The student understands that a number has a specific location on the number line based on what is "next" |
| :--- | :--- |
| in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) |
| Understands the end point as the distance, regardless of the beginning point |
| iv. The student understands the magnitude of "common" fractions (e.g. 1/2, 1/4), and use "common" fractions |
| to estimate magnitude or distance. |
| i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and |
| pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and |
| still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may |
| look different but hold the same relationship to the whole |
| i. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the |
| number of parts is the denominator of the unit fraction. The student can label each part of the partitioned |
| whole as a fraction. |

How do LPs help?

| ii. The student understands that a number has a specific location on the number line based on what is "next" |
| :--- | :--- |
| in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) |
| Understands the end point as the distance, regardless of the beginning point |
| iv. The student understands the magnitude of "common" fractions (e.g. 1/2, 1/4), and use "common" fractions |
| to estimate magnitude or distance. |

How do LPs help?

1.2	ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. 1/2, 1/4), and use "common" fractions to estimate magnitude or distance.
2	i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may look different but hold the same relationship to the whole ii. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the number of parts is the denominator of the unit fraction. The student can label each part of the partitioned whole as a fraction.
1.	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals. (M) Views fractions only as part:whole relationships and not as numbers in their own right (e.g. they view $1 / 4$ in relation to 1 , but not as its own number, 1/4). (E) Incorrectly "counts" intervals between $2 / 5$ and $6 / 5$ as " 4 ." iv.b. The student understands that fractions, $1 / \mathrm{b}$, are located by dividing 1 into b equal intervals (e.g. $1 / 4$ as dividing 1 into 4 equal intervals). The student will be able to make the connection that if the numerator is larger than the denominator then that improper fraction is greater than 1 , and if the numerator is smaller than the denominator then that fraction is less than 1. (i.e. $3 / 3=1$, so $5 / 3>1$ and $3 / 5<1$). (M) Does not grasp that fractions are a quantity (cardinal), measured as a distance from 0 .
1.4	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals, including fractional intervals. (e.g. correctly "counts" intervals between $2 / 5$ and $6 / 5$ as " $4 / 5$ ") iv.b. The student will be able to partition the number line between 0 and 1 into b equal intervals, and recognizes that each interval is the same fractional unit size, $1 / \mathrm{b}$. They can locate the number $7 / 4$ as the distance of seven $1 / 4$ intervals from 0 .

How do LPs help?

].6	ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. $1 / 2,1 / 4$), and use "common" fractions to estimate magnitude or distance.
2.	i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may look different but hold the same relationship to the whole ii. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the number of parts is the denominator of the unit fraction. The student can label each part of the partitioned whole as a fraction.
1 -	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals. (M) Views fractions only as part:whole relationships and not as numbers in their own right (e.g. they view $1 / 4$ in relation to 1 , but not as its own number, 1/4). (E) Incorrectly "counts" intervals between $2 / 5$ and $6 / 5$ as " 4 ." iv.b. The student understands that fractions, $1 / \mathrm{b}$, are located by dividing 1 into b equal intervals (e.g. $1 / 4$ as dividing 1 into 4 equal intervals). The student will be able to make the connection that if the numerator is larger than the denominator then that improper fraction is greater than 1 , and if the numerator is smaller than the denominator then that fraction is less than 1. (i.e. $3 / 3=1$, so $5 / 3>1$ and $3 / 5<1$). (M) Does not grasp that fractions are a quantity (cardinal), measured as a distance from 0 .
$\text { I. } \boldsymbol{\Delta}$	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals, including fractional intervals. (e.g. correctly "counts" intervals between $2 / 5$ and $6 / 5$ as " $4 / 5$ ") iv.b. The student will be able to partition the number line between 0 and 1 into b equal intervals, and recognizes that each interval is the same fractional unit size, $1 / \mathrm{b}$. They can locate the number $7 / 4$ as the distance of seven $1 / 4$ intervals from 0 .

How do LPs help?

].6	ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. $1 / 2,1 / 4$), and use "common" fractions to estimate magnitude or distance.
2.	i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may look different but hold the same relationship to the whole ii. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the number of parts is the denominator of the unit fraction. The student can label each part of the partitioned whole as a fraction.
1 -	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals. (M) Views fractions only as part:whole relationships and not as numbers in their own right (e.g. they view $1 / 4$ in relation to 1 , but not as its own number, 1/4). (E) Incorrectly "counts" intervals between $2 / 5$ and $6 / 5$ as " 4 ." iv.b. The student understands that fractions, $1 / \mathrm{b}$, are located by dividing 1 into b equal intervals (e.g. $1 / 4$ as dividing 1 into 4 equal intervals). The student will be able to make the connection that if the numerator is larger than the denominator then that improper fraction is greater than 1 , and if the numerator is smaller than the denominator then that fraction is less than 1. (i.e. $3 / 3=1$, so $5 / 3>1$ and $3 / 5<1$). (M) Does not grasp that fractions are a quantity (cardinal), measured as a distance from 0 .
$\text { I. } \boldsymbol{\Delta}$	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals, including fractional intervals. (e.g. correctly "counts" intervals between $2 / 5$ and $6 / 5$ as " $4 / 5$ ") iv.b. The student will be able to partition the number line between 0 and 1 into b equal intervals, and recognizes that each interval is the same fractional unit size, $1 / \mathrm{b}$. They can locate the number $7 / 4$ as the distance of seven $1 / 4$ intervals from 0 .

How do LPs help?

1.6	ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. 1/2, 1/4), and use "common" fractions to estimate magnitude or distance.
2	i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may look different but hold the same relationship to the whole ii. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the number of parts is the denominator of the unit fraction. The student can label each part of the partitioned whole as a fraction.
1	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals. (M) Views fractions only as part:whole relationships and not as numbers in their own right (e.g. they view $1 / 4$ in relation to 1 , but not as its own number, 1/4). (E) Incorrectly "counts" intervals between $2 / 5$ and $6 / 5$ as " 4 ." iv.b. The student understands that fractions, $1 / \mathrm{b}$, are located by dividing 1 into b equal intervals (e.g. $1 / 4$ as dividing 1 into 4 equal intervals). The student will be able to make the connection that if the numerator is larger than the denominator then that improper fraction is greater than 1 , and if the numerator is smaller than the denominator then that fraction is less than 1. (i.e. $3 / 3=1$, so $5 / 3>1$ and $3 / 5<1$). (M) Does not grasp that fractions are a quantity (cardinal), measured as a distance from 0 .
1.	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals, including fractional intervals. (e.g. correctly "counts" intervals between $2 / 5$ and 6/5 as " $4 / 5$ ") iv.b. The student will be able to partition the number line between 0 and 1 into b equal intervals, and recognizes that each interval is the same fractional unit size, $1 / \mathrm{b}$. They can locate the number $7 / 4$ as the distance of seven 1 / 4 intervals from 0 .

How do LPs help?

1.6	ii. The student understands that a number has a specific location on the number line based on what is "next" in the list of numbers (ordinal), and that numbers represent a distance or quantity from 0 (cardinal). (M) Understands the end point as the distance, regardless of the beginning point iv. The student understands the magnitude of "common" fractions (e.g. 1/2, 1/4), and use "common" fractions to estimate magnitude or distance.
2	i. The student will be able to partition shapes into equal regions (with equal areas) using paper strips and pictorial representations. The student recognizes that shapes of different sizes can be partitioned equally and still represent unit fractions. (M) Does not recognize that for fraction models involving area, two parts may look different but hold the same relationship to the whole ii. The student makes the connection that a whole is composed of 2 halves, 3 thirds, 4 fourths, and that the number of parts is the denominator of the unit fraction. The student can label each part of the partitioned whole as a fraction.
1	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals. (M) Views fractions only as part:whole relationships and not as numbers in their own right (e.g. they view $1 / 4$ in relation to 1 , but not as its own number, 1/4). (E) Incorrectly "counts" intervals between $2 / 5$ and $6 / 5$ as " 4 ." iv.b. The student understands that fractions, $1 / \mathrm{b}$, are located by dividing 1 into b equal intervals (e.g. $1 / 4$ as dividing 1 into 4 equal intervals). The student will be able to make the connection that if the numerator is larger than the denominator then that improper fraction is greater than 1 , and if the numerator is smaller than the denominator then that fraction is less than 1. (i.e. $3 / 3=1$, so $5 / 3>1$ and $3 / 5<1$). (M) Does not grasp that fractions are a quantity (cardinal), measured as a distance from 0 .
1.	iv.a. The student understands the magnitude or distance between two numbers is related to counting the number of equal intervals, including fractional intervals. (e.g. correctly "counts" intervals between $2 / 5$ and 6/5 as " $4 / 5$ ") iv.b. The student will be able to partition the number line between 0 and 1 into b equal intervals, and recognizes that each interval is the same fractional unit size, $1 / \mathrm{b}$. They can locate the number $7 / 4$ as the distance of seven 1 / 4 intervals from 0 .

Theoretical Distribution

Grade 5 mathematics

4.

$4 7 \longdiv { 1 3 2 5 }$
a. $\quad 28 \mathrm{R} 9$
b. 28 R 1
c. 30 R 15
d. 28 R 19

Theoretical Distribution

Grade 5 mathematics

observed

$$
4 7 \longdiv { 1 3 2 5 }
$$

a. 28 R 9
b. 28 R 1
c. 30 R 15
d. 28 R 19

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts
3. Progress Variables that are developed over time
4. Intermediate Levels of Achievement that progress toward mastery
5. Learning Performances at each Level that articulate students' performance capability
6. Assessments that measure student development along the progression

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts
3. Progress Variables that are developed over time
4. Intermediate Levels of Achievement that progress toward mastery
5. Learning Performances at each Level that articulate students' performance capability
6. Assessments that measure student development along the progression

MStar Progressions

LP1: Understanding Positive Rational Numbers, their Representations, and their Uses

LPR: Understanding Variable Expressions, and their Applications

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts
3. Progress Variables that are developed over time
4. Intermediate Levels of Achievement that progress toward mastery
5. Learning Performances at each Level that articulate students' performance capability
6. Assessments that measure student development along the progression

LP1

Understanding Positive Rational Numbers, their Representations, and their Uses

Magnitude

Fquipartitioning

Decomposition

LPl

Understanding Positive Rational Numbers, their Representations, and their Uses

Magnitude

Æquivalent Fractions

Fquipartitioning

Decomposition

Decimals

Comparing Fractions

Conversion
 between
 Representations

LP1

Understanding Positive Rational Numbers, their Representations, and their Uses

Magnitude

Equivalent Fractions

Decimals

Comparing Fractions

Conversion between Representations

Meaning of Addition

Meaning of Multiplication

Meaning of Division

Proportional Reasoning

LP2

Understanding Variable Expressions, and their Applications

Variables as
 Unknown Quantity

Evaluate

Verbal Translations of Expressions and Fquations

Simplifying Đxpressions

LP2

Understanding Variable Expressions, and their Applications

Variables as
 Unknown Quantity

Evaluate

Verbal Translations of Expressions and Fquations

Relationships between Đxpressions

Solving Fquations

Simplifying
Đxpressions

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts
3. Progress Variables that are developed over time
4. Intermediate Levels of Achievement that progress toward mastery
5. Learning Performances at each Level that articulate students' performance capability
6. Assessments that measure student development along the progression

Example of Sublevels

Fquivalent 17 ractions Progression

Đxample of Sublevels

Fquivalent 17 ractions Progression

	Level Description	Misconceptions
4.1	i. Given a diagram, the student understands that different fractions can represent the same magnitude.	i. Is not able to generate equivalent fractions without being given a diagram.

Example of Sublevels

Fquivalent Fractions Progression

	Level Description	Misconceptions
4.1	i. Given a diagram, the student understands that different fractions can represent the same magnitude.	i. Is not able to generate equivalent fractions without being given a diagram.
	i. Given a diagram, the student can recognize a model that represents an equivalent fraction. The student understands that equivalent fractions will always occupy the same point on the number line. ic The student understands that the number and size i. The parts differ even though the two fractions themselves are equivalent. (e.g. 3/4 has 3 "bigger" parts, and $6 / 8$ has 6 "smaller" parts.)	i. Cannot generate equivalent fractions, can only recognize equivalence when given the models. When asked if two fractions are equivalent, they make mistakes based on estimating partitions (e.g. conclude that $3 / 5$ and 6110 are not equivalent because in their drawing the points did not exactly match up) ii. Does not recognize when "denominators" are easily related as multiples of each other. (e.g. that denominators or 6 and 12 are easily related; but 3 and 5 are not as easily related.)

Đxample of Sublevels

Fquivalent Fractions Progression

	Level Description	Misconceptions
4.1	i. Given a diagram, the student understands that different fractions can represent the same magnitude.	i. Is not able to generate equivalent fractions without being given a diagram.
4.2	i. Given a diagram, the student can recognize a model that represents an equivalent fraction. The student understands that equivalent fractions will always occupy the same point on the number line. ii. The student understands that the number and size of the parts differ even though the two fractions themselves are equivalent. (e.g. $3 / 4$ has 3 "bigger" parts, and $6 / 8$ has 6 "smaller" parts.)	i. Cannot generate equivalent fractions, can only recognize equivalence when given the models. When asked if two fractions are equivalent, they make mistakes based on estimating partitions (e.g. conclude that $3 / 5$ and $6 / 10$ are not equivalent because in their drawing the points did not exactly match up) ii. Does not recognize when "denominators" are easily related as multiples of each other. (e.g. that denominators or 6 and 12 are easily related; but 3 and 5 are not as easily related.)
4.3	i. The student can generate simple equivalent fractions using a visual model (i.e., area model or number line). ii. The student can find common denominators needed to write equivalent fractions i.e. $3 / 4$ as $18 / 24$.	i. The student confuses relative equivalence and absolute equivalence. The fractional representation may be equivalent but the value is not equivalent (i.e., $1 / 4$ of a meter is not the same distance as $3 / 12$ of a kilometer). ii. Cannot generalize the process that dividing the denominator into " n " equal parts results in a numerator that is exactly " n " times as big.

Example of Sublevels

Mquivalent 7 ractions Progression

	Level Description	Misconceptions
4.1	i. Given a diagram, the student understands that different fractions can represent the same magnitude.	i. Is not able to generate equivalent fractions without being given a diagram.
4.2	i. Given a diagram, the student can recognize a model that represents an equivalent fraction. The student understands that equivalent fractions will always occupy the same point on the number line. ii. The student understands that the number and size of the parts differ even though the two fractions themselves are equivalent. (e.g. 3/4 has 3 "bigger" parts, and $6 / 8$ has 6 "smaller" parts.)	i. Cannot generate equivalent fractions, can only recognize equivalence when given the models. When asked if two fractions are equivalent, they make mistakes based on estimating partitions (e.g. conclude that $3 / 5$ and $6 / 10$ are not equivalent because in their drawing the points did not exactly match up) ii. Does not recognize when "denominators" are easily related as multiples of each other. (e.g. that denominators or 6 and 12 are easily related; but 3 and 5 are not as easily related.)
4.3	i. The student can generate simple equivalent fractions using a visual model (i.e., area model or number line). ii. The student can find common denominators needed to write equivalent fractions i.e. $3 / 4$ as 18/24.	i. The student confuses relative equivalence and absolute equivalence. The fractional representation may be equivalent but the value is not equivalent (i.e., $1 / 4$ of a meter is not the same distance as $3 / 12$ of a kilometer). ii. Cannot generalize the process that dividing the denominator into " n " equal parts results in a numerator that is exactly " n " times as big.
4.4	ii. The student understands the mathematical reasoning behind generating equivalent fractions (n / n * $\mathrm{a} / \mathrm{b}=\mathrm{a} / \mathrm{b}$), including that a number divided by itself is $1(\mathrm{n} / \mathrm{n}=1)$, and the identity property of multiplication (n * $1=\mathrm{n}$). The student can generalize the dividing the denominator into " n " equal parts results in numerator that is exactly " n " times as big.	

MStar Process

A Learning Progression, according to Corcoran, Mosher, and Rogat (2009), contains:

1. Target Learning Goals
2. Reportable Outcomes, key concepts
3. Progress Variables that are developed over time
4. Intermediate Levels of Achievement that progress toward mastery
5. Learning Performances at each Level that articulate students' performance capability
6. Assessments that measure student development along the progression

Interaction of Progress Variables: LP1

Interaction of Progress Variables: LP1

LP1: Understanding Positive Rational Numbers, their Representations, and their Uses

Interaction of Progress Variables: LP2

LP2: Understanding Variable Expressions, and their Applications

Validity

- Qualitative analysis from student interviews
- Understanding how these can be used at a "systems" level for content

